Conductive fabric warming (HotDog) showed significantly higher warming rates than forced-air warming (FAW) (0.35°C/hr vs 0.01°C/hr), when all other relevant variables were held constant in a prospective, randomized controlled trial. The temperature difference between the two groups was statistically significant at each data point after 30 minutes.

The authors’ conclusion: “We conclude from these data that the clinical heat transfer effectiveness of [HotDog warming] is significantly greater than FAW convection. This is due to the combination of conductive heat transfer and the larger surface area of simultaneously heating from above and below the patient.”

In multiple trials, HotDog has shown a 96.2% normothermia rate.*

Two HotDog warming blankets and a mattress can be powered by one controller for difficult-to-warm cases.
Effective Warming Improves Outcomes and Reduces Costs

Warming Saves Lives

Hypothermia causes many complications:

- Increased wound infections¹
- Increased blood loss²
- Increased ICU times and hospital stays³
- Higher mortality rates³
- Increased transfusion requirements⁴

"Even mildly hypothermic patients could suffer an increase in adverse outcomes that can add costs of as much as $2,500-7,000 per patient."⁵

Reference citations available at www.hotdogwarming.com

HotDog Meets the Challenge

The HotDog system is versatile and adaptable, able to meet all of your patient warming needs. Consider using HotDog for these challenging cases to really experience the difference:

- Large Heat-Loss Abdominal Cases
- Full Front Prep (i.e. Cardiac)
- Wet Case (i.e. Plastics)
- Steep Trendelenburg Positioning
- Avoiding Implant Infections

TYPICAL PATTERN OF HYPOTHERMIA

PRE-WARMING

The only way to reduce redistribution hypothermia is by pre-warming, specifically pre-warming the legs. HotDog can effectively pre-warm patients to reduce hypothermia.

POIKILOTHERMIC

Under anesthesia, the patient becomes poikilo-thermic (temperature varies with environment). Rate of re-warming depends on the delta between active warming and heat loss from conduction, convection, radiation, and evaporation.